

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Patikirikorala, T., Wang, L., Colman, A., & Han, J. (2012). Hammerstein-Wiener nonlinear

model based predictive control for relative QoS performance and resource management of
software systems.

Originally published in Control Engineering Practice, 20(1), 49–61.
Available from: http://dx.doi.org/10.1016/j.conengprac.2011.09.003

Copyright © 2011 Elsevier Ltd. All rights reserved.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to this

journal, you may also be able to access the published version via the library catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/207490

Hammerstein-Weiner nonlinear model based predictive

control for QoS management in complex software

systems

Tharindu Patikirikoral, Alan Colman, Jun Han, Liuping Wang

Abstract

Keywords:

1. Introduction

The increasing complexity and scale of the software systems demand effec-
tive and efficient mechanisms to manage them in a systematic way. Multi-tire
e-commerce systems, banking systems, cloud computing environments and
many other businesses relay on software systems to deliver desired functional
services, while maintaining the nonfunctional aspects at an acceptable level.
The response time, throughput and security are some of these non-functional
attributes such systems must maintain at all times to avoid customer dissatis-
faction. Traditional methods such as manual tuning via human intervention
or fixed/ ad-hoc polices depending on the peak demand has proven to be
costly, error-prone, time consuming and increasingly difficult to design [1, 2].

For instance, emerging technologies such as cloud computing enables dif-
ferent consumers to deploy their software systems in shared resource pools,
provided by the cloud environment provider. It is an important objective of
the cloud consumers and providers to allocate limited amount of available
resources to maximize revenue. In such environments, static resource allo-
cation decisions depending on estimated peak resource demands either end
up with dissatisfied customers when the demand is underestimated or wast-
ing resources when it is over estimated. Typically, many software systems
provide functional services to multiple client classes. Consequently, these
systems may face varying workloads from different client classes over time.

Preprint submitted to Nuclear Physics B August 3, 2010

In addition, these clients may have different service level agreements (SLA)
and performance isolation requirements with the service provider. Hence, the
resource provision decisions have to be made depending on the varying work-
loads and demands of multiple client classes, while guaranteeing the quality
of service agreements (constraints). These requirements arise for manage-
ment of software systems due to business domain. In addition, management
of such systems is difficult because of the inherent behavior of the software
system. There are many disturbances/behaviors in the software systems that
could affect the runtime management process. For instance, thread context
switching in multithread applications, different scheduling mechanisms of the
operating systems, garbage collection of execution environments and mem-
ory/CPU competition among components are such disturbances/behaviors.
Many of these behaviors cannot be effectively modeled to be used in perfor-
mance management of complex software systems.

These performance management requirements and inherent system be-
havior and disturbances demand effective methodologies to integrate decision
making capabilities in to the software systems, reducing human intervention.
Feedback control is one such methodology that could be effectively used to
achieve above requirements. The feedback control has been used to maintain
quality of service attributes such as response time, throughput and CPU con-
sumption in complex software systems with minimal human intervention (eg:
[4, 5, 6, 7]). However, application of feedback control is difficult due to lack
of first principle models, inherent nonlinear nature of the system (including
actuators and sensors) and discrete/discontinuous control inputs [8, 9].

The existing approaches model inherently nonlinear software systems us-
ing a linear black-box model. The linear models (typically a linear time
invariant models) of the system captures the dynamics of the nominal oper-
ating region it was created. That is the model will be sufficiently accurate
around that operating region. Inherent nonlinear behavior of the system may
affect the accuracy of the model, when the system operates away from nom-
inal operating region. Thus, such approaches may fail when the system is
required to operate in the entire operating range. In addition, implemented
actuators and sensors could integrate nonlinearities in to the system, which
has to be modeled by this single linear model. Thus, representing a complex
system with a single linear model is quite a challenging task. In contrast, the
nonlinear modeling of the system may provide means to describe the global
behavior of the system in the entire operating range, instead of limiting to a

2

certain operating region [10].

In this work, we investigate the performance improvement that can be
achieved by modeling a software system using a nonlinear models and Model
Predictive Control (MPC). In particular, we use a technique called Hammerstein-
Wiener model based predictive control. The Hammerstein-Wiener model is a
block structure model that has been useful to represent nonlinear dynamics
of chemical [11], electrical [12] and biological [13] systems. Figure 1 shows
the block diagram of Hammerstein-Wiener model.

Figure 1: Hammerstein-Wiener model

In the Hammerstein-Wiener model, the linear block of the model is sur-
rounded by two nonlinear blocks. The entire model can be divided in to
two segments called Hammerstein and Wiener. The Hammerstein model
has a nonlinear component followed by a linear component. In contrast,
the Wiener model has a nonlinear component followed by a linear compo-
nent. These nonlinear blocks assumed to model the static nonlinearities in
the system. When these two schemes are combined together we can call it
as Hammerstein-Wiener model. u and y denote the input and output of the
Hammerstein-Wiener model respectively. The intermediate variables v and
w are not measurable.

Typically, a model of the system (the relationship between the input and
output) is constructed using a system identification experiment [14]. The
generated input-output data pares are fit into a sufficiently accurate linear
time invariant (LTI) model. The model structure selection and parameter
derivation is involved in this model fitting process. Finally this model will
be used to analyze the system behavior or controller design purposes. How-
ever, identification of Hammerstein-Wiener model becomes complex because
of the addition of nonlinear blocks. The complexity induces because, instead
of concentrating only on linear block of the model we have to be concerned
about the model structure selection and the parameters derivation of the
nonlinear blocks. Even though, we have additional parameters to decide we

3

can only use input-output (u, y) data, since the intermediate (v, w) variables
are not measurable. The nonlinear components can be represented by many
different nonlinear functions. The piecewise linear, polynomial with degree
n, nonlinear-ARMA (auto regressive moving average) models and splines are
some of these functions used in literature to approximate these static nonlin-
earities [11, 15, 16, 17, 18]. There are different types of system identification
and estimation algorithms to derive parameters for different functions from
input and output data. However, if some details about these static nonlinear-
ities are know at the design time modeling process could be simplified. For
instance, known nonlinearities of the control input could be modeled and in-
tegrated to the system as an input nonlinear component of the Hammerstein-
Wiener model, instead of using aforementioned approximation methods.

The model predictive control is a effective controlling mechanism which
utilizes the dynamic model of the system to predict and optimize the fu-
ture behavior of the system [20, 21, 29]. The model predictive control has
proven to be useful to control many physical plants due to the capability
of constraints handling and integrating multiple variables. However, many
applications of MPC are based on linear model of the system. Even the
accuracy of the linear model prevails around the nominal operating region,
linear models have proved to be useful to control nonlinear processes [26].
When linear models encounter highly nonlinear processes, the controller per-
formance tends to degrade due to incapability of linear models to describe
the global behavior of the system. Motivated by such cases, nonlinear-MPC
techniques are developed to control inherently nonlinear systems. Several
nonlinear models have been already applied with MPC and proved to be use-
ful. The physical (first principle) models, neural networks, nonlinear-ARMA
models and Volterra models [18, 26, 29] can be highlighted as such models.
Many of these models impose difficulties in identification of the model due
to nonlinear operators and number of parameters [30]. In addition, compu-
tational and time complexity of the constraint problem that has to be solved
online increases [30, 31]. Solving a nonlinear quadratic programming prob-
lem online is difficult compared to standard quadratic programming problem
[31]. The attractive feature of block structured nonlinear modeling is that
it integrates static nonlinearity in to the control system by preserving some
of the numerical properties of original MPC constraint problem [26]. The
integration of inverse nonlinear compensators in to the control system en-
ables the predictive controller to work with transformed variables so that we

4

can still use standard quadratic programming, avoiding unnecessary com-
putational complexity of solving nonlinear constraint problem [26, 29, 30].
However, due to involvement of transformed dynamics optimization problem
may settle for sub optimal solution compared to the original problem [30].
There are many work that has shown individual application of Hammerstein
model [31, 12] and Wiener model [26, 29] can improve the control of phys-
ical plants. In contrast, successful application of combined Hammerstein-
Wiener model based predictive control is rare. In this work we show how
to formulate the constraint optimization problem with transformed variables
for Hammerstein-Wiener model based predictive controller.

The relative guarantee is one of the design schemes that is looked at many
times in literature [6, 19]. The design of these control schemes integrates actu-
ator and sensor nonlinearities to the systems, so that even with a sufficiently
accurate model of the system, the feedback control system settles down with
large steady state errors and overshooting. Hence, the system becomes os-
cillatory and unstable when it operates away from its nominal operating
point. In this work we illustrate the performance improvements that can be
achieved by integrating the known static control input nonlinearities and es-
timating unknown output nonlinearities as Hammerstein-Wiener model. In
addition, we use model predicative [20, 21] controller(MPC) and try to uti-
lize the constructed Hammerstein-Wiener model in controlling the system.
The sufficiently accurate model of the system is an important requirement
to apply model in MPC. To this end, we show that Hammerstein-Wiener
model based predictive controller achieve significantly better performance
compared to single linear model of the system. In addition, the proposed
design process preserves the numerical properties of linear MPC constraint
problem, while incorporating nonlinear modeling of the system. Thus, it is
much computationally inexpensive compared to solving nonlinear quadratic
problem.

2. Related Work

The feedback control has been used to incorporate self-managing capa-
bilities to software systems in last decade. Use of control theory to control
web server systems [6, 22], cache and storage systems [5, 19] and data cen-
ters/server clusters [7, 23] are such attempts. However, they design a liner

5

system with linear control inputs to control an inherently nonlinear sys-
tem. Feedback control was also applied in multi-client class environments
in [5, 6, 7]. D. Kusic et al, proposed a feedback control mechanism [7] to
allocate servers in the cluster to specific client classes. Their approach was
designed considering detailed information about the behavior of the system,
instead of black-box modeling (modeling the system using only input and
output data). In many legacy software systems (including the class of sys-
tems described in section 3), may not have detailed behavioral and workload
specific information so that such designs are hard to apply. In this work we
use black-box modeling similar to [4]. Relative guarantee design scheme and
feedback control is discussed in [6, 19, 24], however the performance degrada-
tion due to nonlinearities introduced by design is not addressed. In addition,
they do not consider other common policies (minimum amount of allocation)
in the design.
In this work, we model the system under consideration as a black-box and try
to design a relative guarantee control scheme for a multi-client class environ-
ment to achieve the desired performance objectives of the software/service
provider.

3. Case study

Figure 2: The target software system

The software system in figure 2 illustrates one of the common resource
allocation problems in traveling (flight) reservation systems. The server has
to communicate with a 3rd party supplier to respond to client requests (eg:
check/book flight availabilities). However, the 3rd party supplier only pro-
vides limited number of sessions (20 in the scenario discussed in this paper,

6

typically range from 50-200 in a real systems) to communicate with them.
Assume that, two clients (travel agents A and B) are interested in the services
provided by this server (service provider). The objective of the server is to al-
locate the limited number of sessions (communication links) provided by the
3rd party supplier between agents A and B, and maintain the response time
of the requests at an agreed level, under varying workloads. Fast responses
to the requests are one of the main objectives of the travel reservation web
applications to avoid customer dissatisfaction (e.g: flight search results).
A prototype of a similar reservation system was developed having the ar-
chitecture shown in figure 2. The services of the sever can be accessed by
connecting to the socket (IP and port number). After the connection is
made the clients can send different messages invoking different service meth-
ods. When a message is received by the message queue, time stamp-1 is
applied and then the request is classified according to the client class and
put it to the specific client queue. Then on the availability of the sessions,
the scheduler access the client queues in first come first serve (FIFO) fashion,
and schedules the messages to be sent to the 3rd party supplier. When the
response is received by the server it is sent back to the client through the
socket. The time stamp-2 is applied before the response is sent back via the
client socket.
In this work we allocate sessions depending on varying workloads so that
the response time could be maintained within the bounds of response time
mentioned in Service Level Agreement (SLA). The end-to-end response time
consist of three main delay components. The communication delay, connec-
tion delay and the processing delay [6]. In this work we refer to processing
delay as the response time because it is hard to guarantee the end-to-end
repose time due to network specific issues and different scheduling designs
of different operating systems. The response time for a single request is the
time difference between time stamp-1 and 2 and it is measured by seconds.
However, for control purposes the average response time of the workload is
taken within in 2 second sampling window. Let us denote the average re-
sponse time of workload A and B as Ra and Rb respectively. Similarly, the
session allocation between workload A and B as Sa and Sb. Then, a relative
guarantee feedback [6] control system is composed to achieve the control ob-
jectives of the server.
According to the relative guarantee scheme the manipulated variable is the
ratio of session allocation, represented by Sa

Sb
and the output variable is the

7

ratio of average response time of the workloads, represented by Ra

Rb
. The con-

trol objective of this control system is to maintain a constant response time
ratio between two workloads A and B. Such control objectives are useful
in multi-client class environment, because it gives the designer flexibility to
control the relative importance of the client class. For instance, if client A is
important for the service provider more than client B, it can be incorporated
as an objective in the decision making. The costs, penalties for violating
SLAs and response time requirements can be used to decide this relative im-
portance.
In addition to the main control objective, the scheduler is constrained with
set of other control policies to avoid starvation of sudden burst of requests.
The minimum number of sessions for a client class is declared to serve this
purpose. We constrained Sa, Sb ≥ 4, however whether to impose these po-
lices or not depends on the requirements of the application. When the session
ratio is decided to be changed, the ongoing communication of sessions is not
halted immediately. We also take an non-preemptive design approach sim-
ilar to [6] , where we let the current session communications to terminate,
before taking over them to implement new scheduling decisions. We assume
that this actuation delay is negligible. In addition, relative guarantee prob-
lem to be meaningful we have to assume there is always at least one request
arrives from each client class in each sampling period. Further, we assume
that different message types that are sent are equal, when taking the average
response time.
The prototype system was deployed in a machine with Intel Core(TM)2duo
E8400 CPU@3.00 GHz ,2.99 GHz processor and 2 GB memory. To simulate
two client workloads we use a machine with Core(TM)2duo E6550 CPU@2.33
GHz,2.33 GHz processor and 3 GB memory. The server communicates with
3rd party supplier component using Simple Object Access protocol (SOAP),
similar to most of the real world scenarios. The 3rd party supplier compo-
nent was designed using a Java as a web service which was deployed in a
Tomcat 5.5 with Axis 2 web service engine. The machines were connected
via 1 Gps Ethernet. From the above requirements the control input Sa

Sb
, can

only take certain discrete values. Let Sa = 20− Sb then
Sa

Sb
= 20−Sb

Sb
, where

Sa

Sb
= 4

16
, 5
15
, 6
14
. . . 15

5
, 16

4
. If we closely analyze these operating points, we can

see that they are discontinuous with non-equal gaps between two consecutive
points.
In this work we show how these known input nonlinearities and unknown

8

static output nonlinearities can affect the performance of a relative guaran-
tee control system. We investigate the possibility of performance improve-
ments by incorporating these nonlinearities in the model as Hammerstein-
Wiener models. In addition, we provide a systematic process of designing
and integrating Hammerstein-Wiener model for relative guarantee control
problem. However, we believe that it is more usdful in cases where input
nonlinearities are known and static output nonlinearities can be estimated.
Moreover, we show how we can design a model predictive controller using
Hammerstein-Wiener model. Finally, we provide a performance analysis and
performance comparison of fixed controller, Single linear model, Hammer-
stein model, Weiner model and Hammerstein-Wiener model based MPC.

4. Dynamic modeling

To analyze the behavior of the system and design a feedback controller,
construction of a relationship between control input and measured output
is a necessity. Typically, system identification [14] is widely used technique
to build this relationship or the model of the system. In system identifi-
cation, an experiment is conducted to gather input-output data from the
system. Specially designed (persistently exciting [14, 25]) control input sig-
nal is applied in to the system and the measured output is observed for
certain period of time. Afterwards, the input and output data pairs are used
in the selection of the structure and deriving the parameters of the model.
There are different types of models that could be used to represent the sys-
tem model. For instance, Autoregressive Moving Average (ARMA) models,
Finite Impulse Response (FIR) models and State space models are used as
common models. Depending on the structure of the model the number of
parameters to be decided going to vary. In general, these models represent
the liner systems or linear components of a nonlinear system such as the
Hammerstein/Hammerstein-Wiener models.
To model the prototypical system described in section 4, we use two ap-
proaches. In section 4.1 single linear model of the system is constructed to
represent the system. In this case, the entire system is assumed to be lin-
ear. Section 4.2,4.3,4.4, provides the systematic design process of the same
system as different nonlinear block structured (Hammerstein, Wiener and
Hammerstein-Wiener) models.

9

4.1. Single linear model

A pseudo random signal consisting of possible values of u was injected into
the system and the measured output was observed for 600 sample periods.
Then the gathered data was divided in two sets called estimation set and
test set. Data samples between 1st to 400th samples were included in the
estimation set, which was used to construct the model of the system. The
rest of the data samples were used as test set to validate and assess the
quality of the model. For this particular data set we used Autoregressive
exogenous input (ARX) model. The standard structure of ARX model is as
follows:
ARX(n,m,d)

y(k) =
n∑

i=0

aiy(k − i) +
m∑
j=0

bju(k − d− j)

where n,m - order of the model, max(n,m) is normally considered as the
order.
ai, bj- parameters of the model
d - delay (time intervals taken to observer a change of input in the output).
Given the estimation set, least square regression algorithm [14] was used to
decide the order, delay and the parameters of the model. We constructed
ARX(1,1,0), ARX(1,1,1) and ARX(2,2,0) models and used the test set to
validate the quality of the model. From the validation we can say that
this system fit better to a second order ARX model having high predictive
accuracy (97%). However, due to simplicity of design we used ARX (1,1,0)
model to represent the system which had close to 96% fit with the test set.
The model and the parameters are as follows:

y(k) = 0.8331y(k − 1) + 0.6542u(k) (1)

4.2. Hammerstein-Wiener model construction

As the figure 1 illustrates, Hammerstein-Wiener model introduces two
additional nonlinear blocks compared to single linear model construction
process covered in section 4.1. This leads to the complexity of deciding
the model structure for input and output nonlinear blocks as well as decid-
ing parameter for selected structure. Hammerstein-Wiener model is useful
when the considered nonlinearities are static (not time varying). In addition,
if some information about these static nonlinearities (such as structure) is
known at the design time we can simplify the model construction process.

10

We investigated the possible operating points and output of the system using
set of experiments to check whether we can observe any static nonlinearity.
This investigation yield interesting results.
The figure 3 shows all operating points depending on the requirements in
section 3. When A and B are equally important and when they are send-
ing same amount of workloads, the session allocation around 1 can be taken
as the nominal operating point. Compared to the nominal operating point
when session allocation for A increases, the operating points are indicated
as A operating region. Similarly, when session allocation for B increases, the
operating region is indicated by B operating region. It is clear that these op-
erating regions are not similar. The gaps between the consecutive operating
points in region A increases when it reaches the boundary of the operating
range. In contrast, the gaps decrease in the B region. Such discontinu-
ous/nonlinear operating points could drastically affect the performance of a
linear controller. The problem is how to remove this known input nonlinear-
ity in the system so that performance of a linear controller can be improved.
This motivates us to use Hammerstein model to in-cooperate the known
static nonlinearity as input nonlinearity in to the control system.

Figure 3: Possible operating points (control input)

The input nonlinear component of the model can be represented by dif-
ferent functions/model structures [18]. For instance, polynomial, pricewise
linear, nonlinear-ARMA models, splines and neural-networks are such func-
tions [16, 18, 26]. However, high emphasis has to be given to the selected
function, because it is a necessary conditions that the selected function should
have an inverse, to aid controller design process [26]. We used a polynomial
function of order r to estimate the input nonlinearities. The specific advan-
tage of using polynomial function is that, it is convenient to construct its

11

inverse function with sufficient fit [26]. Let us assume that un-measurable
intermediate variable v takes the values of -6, -5, 4 . . . -1, 0, 1 . . . 5, 6. The
main property in this selection is that v has equally spaced points in its
range. Then using polynomial function f we try to approximate v using u
(see equation 2). The curve fitting tool (cftool command in Matlab [27]) was
used to construction of f. A polynomial of degree 4 was used to approximate
v using u. It is always recommended in any model construction process to
approximate a good fit while keeping the order of the polynomial as low as
possible to avoid computational overhead [28]. Then the inverse function
f−1 was approximated by interchanging the x and y parameters of the cftool
command. That is range of v was taken as x data and u was taken as y data.
The model f−1 was also approximated with sufficient fit by a polynomial of
order 4 (See equation 3). The idea behind estimating inverse function of f is
that it can be used to cancel off the existing (/imaginary) input nonlinearity.
To check the quality of the function approximation we can use following step
by step process.

• Calculate the output of f−1 using the rage of v as the input. Let’s call
this (u′).

• Then use u′ in f to calculate the output. Let’s call this (v′).

• Compare the original input at step 1 v, with v′. If their relationship
looks approximately linear we can say that the approximation is good
enough. Otherwise we have to redesign the function with different
structures and parameters.

In the design process function f could be fit in to the model 2 with good-
ness of fit value of 0.9998. If we used a 5th order polynomial we would have
achieved goodness of fit value of 1. However, due to additional computa-
tional burden we opted to used polynomial of degree 4. Similarly, the inverse
function of f could be sufficiently fit in to a polynomial of degree 4 with a
goodness of fit value of 0.9998. After estimating these functions the above
step by step validation process was carried out to check the accuracy. The
figure 4 shows the comparison of v and v’, which illustrates a sufficient linear
characteristics.

12

0.5 1 1.5 2 2.5 3 3.5 4

−6

−4

−2

0

2

4

6

u

v

v vs. u

fit 1

(a) f(u)

−6 −4 −2 0 2 4 6

0.5

1

1.5

2

2.5

3

3.5

4

v

u

u vs. v

fit 2

(b) f−1(v)

Figure 4: The data points and function approximation

v = f(u)

= −0.1584 ∗ u4 + 1.696 ∗ u3 − 6.959 ∗ u2 + 14.63 ∗ u− 9.17 (2)

u = f−1(v)

= 0.0003828 ∗ v4 + 0.003445 ∗ v3 + 0.01722 ∗ v2 + 0.1857 ∗ v + 1.006 (3)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

v

v
’

v vs v’

Figure 5: validation of estimated nonlinear functions (v vs v
′
)

Then assuming that this imaginary f function is a part of the system

13

model we integrated the inverse of it as a component in to the software sys-
tem. It was integrated just before the actuator (the actuator accepts original
control u as an input). After this step the transformed system operates with
v instead of u.
The next step is to investigate whether there is static output nonlinearity
in the system. We conducted several experiments with different control sig-
nals and observed the behavior of the output. Out of those experiments, the
output for the sinusoidal control signal demonstrated the behavior in figure
6.

Figure 6: Output of the system for a sinusoidal input signal

Figure 6 shows that there is nonlinearity in the output as well. The range
of values when system is operating in region A is drastically higher than B.
That is the span of the measured output is wide in region A compared to
region B. In addition, we noticed that such behavior is shown periodically
in the data with very small noticeable deviations. This behavior indicated
that the nonlinearity in the output is not drastically time varying. In other
words it remains sufficiently static to be modeled as static output nonlinear-
ity. The intuition behind this was to give the linear controller more equally
spanned output to operate. With this idea in mind, we conducted several
system identification experiments using different types of input signals. Ba-
sically, we used popular input signals that are used in control literature such
as two types of Pseudo Binary Random signals (PBRS), sinusoidal signal and
white noise [11]. The main concern in selecting an input signal for nonlinear
system identification experiment is the signal should be rich enough to ex-
cite the static nonlinearities, and should not be over exciting to invoke other
none static nonlinearities [16]. The PBRS signal generally considered as not

14

rich enough to excite nonlinearities of the system [16]. However, sinusoidal
and white noise has been used extensively to approximate the nonlinearities
due to their rich excitation (eg: [11]). Then the data gathered from these
system identification experiments were divided in to estimate and test set
in a similar fashion described earlier. To estimate the linear subsystem and
nonlinear subsystem of Wiener model we used Matlab [27] command called
nlhw, which provides flexibility to use deferent model structures for linear
and nonlinear subsystems. In addition, it provides the option to select differ-
ent types of nonlinear functions useful to represent the nonlinear subsystem
of Hammerstein-Wiener model.

%ze - contains the data in the estimation set, zv- contain the data in test set
% ’unitgain’ indicate we are not going to model Hammerstein model
% poly1d function describes a polynomial of order r
% eg : [n m d] indicates the order of the LTI component
M = nlhw(ze,[n m d], ’unitgain’,poly1d(’deg’,r));
% evaluative the model respect to the test set data and provide the indica-
tion of accuracy
compare(zv,M);

Experiment settings are as follows:

• For PBRS identification experiment we used the midpoint of operating
range of A and B. The signal consists of v = 4 and v = −4 levels.
We used two types of switching algorithms. The value was selected
randomly and applied in the system every 5th sample (we call this as
PBRS). Then in the other case we applied two values interchangeably
every 20th sample time (we call this as PBS), which is a periodic square
wave.

• For the sinusoidal experiment, input signal consists of all possible values
of v changed in a sinusoidal manner with a period of 112 samples.

• For the white noise, input signal consists of randomly selected level
from all possible values of v with a switching time of 4 time samples.

The model validation results for different model structures are shown in
table 1. (n,m,d) represent the orders of linear complement and (r) represent
the polynomial order of the nonlinear component of the Wiener model.

15

Table 1: Model validation results

(n,m,d,r) PBRS PBS Sinusoidal White noise
(1,1,0,3) 57.75 87.39 82. 28 40.66
(1,1,1,3) 48.83 83.57 83. 05 31.36
(2,2,0,3) 57.71 87.7 84.68 37.3
(1,1,0,4) 56.14 87.69 85.53 39.89
(1,1,1,4) 48.06 82.55 85.86 31.14
(2,2,0,4) 55.72 87.74 86.18 37.36
(1,1,0,5) 54.34 87.95 86.21∗ 39.93
(1,1,1,5) 47.8 82.52 86.51 30.18
(2,2,0,5) 53.7 87.74 86.29 37.46
(1,1,0,6) 53.29 89.07 86.07 39.96
(1,1,1,6) 47.42 82.59 86.43 28.07
(2,2,0,6) 52.99 87.29 86.1 37.48
(1,1,0,7) 52.63 89.67∗ 85.76 38.04
(1,1,1,7) 46.88 82.86 86.07 25.2
(2,2,0,7) 52.66 88.29 85.76 36.71

The model validation results indicate that, the data generated from PBS
and sinusoidal signals fit to data better compared to the signals with random
variations. The lower order (r = 3, 4) polynomials provide less fit to data
than the higher order polynomials (r = 5, 6) in the case of PBS. In particular,
the model with first order linear model and 7th order polynomial provided the
highest fit with 89.67% accuracy. In many model settings first order model
without delay fit with high accuracy compared to first order model with delay
or the second order model. In sinusoidal signal based experiment, when the
polynomial function with order 5 provides the highest accuracy compared to
other model parameter settings. Overall, the lower order models have lower
fit compared to higher order models. The experiments based on signals with
random variations, fit to model data with drastically low fit. This could
be because of control input signal is overly exciting so that the non-static
nonlinearities are also excited. When this is the case fitting the data with
static nonlinear function would amplify the other unmolded dynamics excited
by white noise [11]. However, different types nonlinear functions (other than
polynomials which we used in this case), may provide better fit than what
we observed in the table 1. From the above results, it looks promising to

16

85 90 95 100 105 110 115 120
Sample Id

zv; measured
m1; fit: 89.67%

(a) PBS (1,1,0,7)

85 90 95 100 105 110 115 120
Sample Id

zv; measured
m1; fit: 86.21%

(b) SINE(1,1,0,5)

Figure 7: The model fit for a) PBS (1,1,0,7) b) SINE(1,1,0,5)

use models constructed with data from PBS (we refer to it PBS (1,1,0,7))
and Sinusoidal (we refer to it SINE(1,1,0,5)) order settings for the rest of the
experiments. Figure 7 shows the validation results for the model fits.

After deciding on the model structure and parameters for the output non-
linearity, next step is to estimate the inverse function. However, to estimate
the inverse of the polynomial function, we need to calculate the correspond-
ing data for intermediate variable w. To derive this data we used Matlab [27]
command called sim to simulate the model. The figure 9 shows the code.

% M is the model object returned by nlhw function
% V contains the control signal data points
linModel = M.LinearModel;
w = sim(linModel, V);

After calculating data for intermediate variable w, cftool command was used
to estimate the inverse function of y and w. The validation results for the
model fits are shown in table 2.

For both cases validation results did not improve drastically after the 7th

order. To avoid over fitting and reduce computational burden we used poly-

17

Table 2: Validation results of the output inverse function

Order of Inverse
polynomial g−1(y)PBS g−1(y)SINE

4 0.93 0.88
5 0.95 0.89
6 0.95 0.9
7 0.96 0.91

2 4 6 8 10 12 14 16 18 20
y

w vs. y

fit 1

(a) PBS (1,1,0,7)

5 10 15 20 25 30 35 40 45 50
y

w vs. y

fit

(b) SINE(1,1,0,5)

Figure 8: The model fit for inverse function - a) PBS (1,1,0,7) b) -
SINE(1,1,0,5)

18

nomial with 7th order model in PBS and sinusoidal based inverse function.
The respective functions are as follows:

w = g−1(y)PBS

= 1.019e−005 ∗ y7 − 0.0007953 ∗ y6 + 0.02493 ∗ y5 − 0.4004 ∗ y4+
3.479 ∗ y3 − 15.78 ∗ y2 + 34.02 ∗ y − 20.06 (4)

w = g−1(y)SINE

= 6.054e−008 ∗ y7 − 1.212e−005 ∗ y6 + 0.00097 ∗ y5 − 0.03944 ∗ y4+
0.855 ∗ y3 − 9.437 ∗ y2 + 46.76 ∗ y − 53.40 (5)

The model fit for these inverse function approximations are shown in figure
8.
Then for each case we integrated this estimated inverse output nonlinear
function as a component in the system following the sensor. The sensor
provides the original output of the system, which is the input to the output
nonlinear component. Figure 9 shows the structure of the system after the
integration of inverse input and output nonlinearity functions.

Figure 9: Structure of the software system after integrating the inverse func-
tion

Then the main question is what about the linear subsystem of the Hammerstein-
Weiner model. This model is important for analyzing the behavior of the sys-
tem and controller design purposes. We already decided on first order ARX
model to capture the dynamics of this linear subsystem, when approximat-
ing the nonlinear function for Weiner model. The linear component model
derived during Wiener model estimation is as follows:

PBS : w(t+ 1) = 0.84w(t) + v(t) (6)

SINE : w(t+ 1) = 0.96w(t) + v(t) (7)

The initial controller design and experiment attempts using these models
showed significant performance issues. The reason could be the input signals

19

that were used to construct the Wiener model were not sufficiently exciting
to capture the other dynamics of the system. These unmolded dynamics
may have affected the performance of the controller in those experiments to
affect the performance of the linear controller. To rectify this issue, we did
another white noise input signal based system identification experiment with
the system structure shown in figure 9. We did two separate identification
experiments replacing g−1, with g−1(y)PBS and g−1(y)SINE. The equations
8 and 9, shows the ARX models for the linear component of Hammerstein-
Weiner model and the validation.

PBS : w(t+ 1) = 0.82w(t) + 1.1v(t) fit : 14.1% (8)

SINE : w(t+ 1) = 0.81w(t) + 2.39v(t) fit : 92.1% (9)

The fit of the PBRS case was quite low because there was a one large spike
in the predicted values from the model in equation 8. It generated a large
prediction error in model validation process. Due to this spike the model fit
was quite low. Form the observation of data we realize that this large spike
is due to a value that has not captured in PBS experiment based Weiner
modeling. Such unseen values provide drastically different values when the
inverse nonlinear function is plugged in to the system. However, we believe
that careful selection of switching period and levels of PBS could solve such
large spikes.
If we compare the equations 6 and 7, we see that there is a drastic difference
in the parameters of the model especially, in the case of sinusoidal. Such
inaccuracies may have affected the performance of the controller as we dis-
cussed earlier.
To check the quality of the function estimation we can take the approach
similar to the case of input nonlinearity.

• From the identification data simulate the model (eg: equation (8), (9))
and calculate the w′

• Using observed measured output calculate w′′ using inverse of output
nonlinearity.

• Compare w′ and w′′. If they are linearly distributed the quality of the
estimation is fair enough. (see Figure 10)

Using the same data gathered from experiments described in this section,
we constructed Hammerstein and Winner models separately for prototypical
system.

20

100 200 300 400 500 600
Sample Id

w’
w’’

Figure 10: Validation of output nonlinearity case of SINE. (w’ vs w”)

4.3. Hammerstein model construction

The data gathered from the final system identification experiment was
used for this purpose. We created estimation and test sets with v and y
variables. Using the estimation set we used a first order ARX model to fit
the data. The equaition 10 shows the model, which was fit to data with 96%
accuracy.

y(t+ 1) = 0.91y(t) + 0.31v(t) (10)

4.4. Weiner model construction

To construct the Weiner model for the prototypical system, we utilized
the data gathered with the sinusoidal signal of experimented discussed in
section 4.2. Then u and y data values were fit to a 5th order polynomial
and first order ARX model similar to the procedure illustrated in section
4.2. It was fit with 81% accuracy. However, the model fit was not that high
compared to the Hammerstein-Weiner model constructions. This could be
because of the discontinuous input u, used in the individual Weiner model.
in the Weiner model. Then the inverse of the nonlinear function was derived
using Matlab code given in section 4.2. The inverse function fit in to 5th order
polynomial with 87% of fit. The inverse function and the data gathered from
final white noise experiment in the Hammerstein-Weiner model construction
process in section 4.2, was used to derive the linear model. First using the
inverse nonlinear function, the intermediate variable w was calculated. Then
the data points in white noise signal u and calculated w was used to construct

21

the linear component of the Weiner model. The model details are as follows:
Linear model:

w = g−1(y)Weiner

= 8.33e−007y5 − 0.0001256y4 + 0.006973y3 − 0.1798y2

+ 2.879y + 24.37 (11)

Linear model:

w(t+ 1) = 0.92w(t) + 1.52u(t) (12)

After these modeling procedures, next step is to understand the system-
atic process of designing a controller for this particular system so that self-
managing objectives can be achieved. For this purpose we hope to use model
predictive control. In the next section we provide the systematic process of
designing a model predictive controller for Hammerstein-Weiner system.

5. Model predictive control design

5.1. Linear Model predictive control

The model predictive control is a technique which tries to optimize the
future behavior of the system using the predictions from a dynamic model of
a system [20, 21, 29]. The model predictive control has proven to be useful
to control many physical plants due to the capability of constraints handling
and integrating multiple variables. In MPC, the dynamic model of the system
is used to predict the future behavior of the system. These predictions are
compared with the reference signal (set point/control objective) to check
whether there are any deviations (control errors). Depending on the error
sequence, an optimal control input sequence is derived by optimizing the
cost function J(k) (see equation 13). However, only first element of the
calculated input sequence is applied in the system, rest of the sequence is
discarded. This concept is called as receding horizon principle [21]. The

22

main variables governing the controller is as follows:

J(k) = (Rs − Y)Q(Rs − Y)T +∆UR∆UT (13)

Rs = the reference trajectory

Y = [y(k + 1|k)y(k + 2|k) . . . y(k +Np|k)]T

contains predictions at kth time instance

∆U = [∆u(k)∆u(k + 1) . . .∆u(k +Nc − 1)]T

u(k) = u(k − 1) + ∆u(k), (14)

where u(k) is the actuation for the current time interval.

R = rwI ,where rw indicates the control effort

Q = weight vector to indicate the trust on the future predictions.

To tune the performance and computational overhead of the controller, there
are several tuning parameters integrated to the control design. The predic-
tion horizon Np, control horizon Nc, rw and Q can be used for this purpose.
If the dynamic model of the system is trustworthy and system is not highly
time varying Np can be fixed to be large value. However, large prediction
horizon imposes high computational overhead [26]. Similarly, large values for
Nc increase the amount of computation. rw parameter is useful to adjust the
control effort by the controller. Use of large values reduces controller effort
or aggressiveness, while low values increases the aggressiveness. In general
all these parameters can be used to adjust the performance, but it is conve-
nient to fix values of several of them and adjust desirable parameter to tune
the controller. In addition, the model predictive control is useful because we
can incorporate constraints in to the optimization process which is solved at
runtime. The constraints always exist in the real physical systems due to
limited range of input. For instance, in the prototypical system we only have
20 sessions to be allocated among different client classes, depending on the
workload disturbances. The constraints fall under soft or hard constraints.
The hard constraints are involved with control input because we cannot ex-
ceed the limits at any cost. However, other constraints on measured output
and state space variable can be relaxed to improve the performance of the
controller. Typical constraints are as follows:

23

Minimize J(k)

Subject to :

umin ≤ u(k) ≤ umax

∆umin ≤ ∆u(k) ≤ ∆umax

ymin ≤ y(k) ≤ ymax

This constraint problem is solved online using standard quadratic pro-
gramming [21]. We used the general predictive controller for the linear model
constructed in section 4.1.

5.2. Hammerstein-Weiner Model predictive control

From the section 4, the linear component of the Hammerstein-Wiener
model can be generally represented as : w(t + 1) = aw(t) + bv(t) , where
the original variables of MPC, u(t) and y(t) are replaced by the intermedi-
ate variables v(t) and w(t) respectively.With this, the cost function can be
represented with the transformed. The transformed controller is as follows:

J(k)(HW) = (Rs(HW) −W)Q(HW)(Rs(HW) −W)T +∆V R(HW)∆V T (15)

Rs(HW) = g−1(Rs) (16)

w(k) = g−1(y(k)),y(k) is taken from the sensor. (17)

W = [w(k + 1|k)w(k + 2|k) . . . w(k +Np|k)]T

contains predictions at kth time instance

∆V = [∆v(k)∆v(k + 1) . . .∆v(k +Nc − 1)]T (18)

v(k) = v(k − 1) + ∆v(k), (19)

u(k) = f−1(v(k)), (20)

where u(k) is the actuation for the current time interval. (21)

R(HW) = rw(HW)I where rw(HW) indicates the control effort

Q(HW) = weight vector to indicate the trust on the future predictions

Similar to original cost function of the MPC problem discussed in section
5.1, here the variables are transformed. The controller operates with the
intermediate variables v(t) and w(t). The measured output for the controller
in the current time sample is calculated by equation 17, using the sensor

24

information of the original system. Similarly, equation 20 is used to calculate
the original control output of the system before actuation. Other important
alteration is reference signal or the set point (Rs to Rs(HW)). The reference
signal has to be filtered through the inverse output nonlinear function to
be transformed in to intermediate variable. The tuning parameter selection
process does not change, however they have to be selected analyzing the
model of linear component of Hammerstein-Wiener model. Let us try to
transform the constraints as well. Now, the limits of the control input and
the measured output has to be transformed in an effective manner so that
the constraints of the original problem can be preserved indirectly. This
transformation is as follows:

Minmize J(k)(HW)

Subject to :

f(umin) ≤ v(k) ≤ f(umax)

∆vmin ≤ ∆v(k) ≤ ∆vmax

g−1(ymin) ≤ w(k) ≤ g−1(ymax)

The original constraint problem is now transformed in to intermediate
variables based constraint problem. We used inverse nonlinear input and
output functions. The upper limit and the lower limit of rate of change of
control input, has to be decided depending on the selection of range of v. For
the prototypical system we used variable v to range from -6 to 6 with equal
gaps of 1. So if its desirable we can use −1 ≤ ∆v(k) ≤ 1 as a constraint.
Form the above transformation process we can see that the MPC algorithm
and the constraint problem have not changed drastically. The final control
system takes the structure shown in figure 11.

Figure 11: Block diagram of the software system after integrating the inverse
function

25

Using the model predictive controller described in this section we provide
comparative study on the performance of the linear and nonlinear model
predictive controllers.

6. Experiment results

In this section we utilize the models and the controllers designed in previ-
ous sections to investigate thier performance in a relative guarantee control
system. In particular, linear model, Hammerstein model, Wiener model and
Hammerstein-Wiener model based predictive controllers will be evaluated.
Further we show the performance of the fixed controller to motivate the re-
quirements of self-managing capabilities in complex software systems. For all
these experiments we use analytical (synthetic) workload settings showed in
figure 12. We opted to use analytic workload instead of trace base workloads
(workloads recorded from a real system) because it is easy to understand the
behavior of the control system when it faces the workloads with interested
characteristics. At 30th sample A workload increases from 10 requests/sec to
30. This could be a case where travel agent A has advertised special travel
plan/fares for a limited amount of time, so that there is a sudden increase of
workloads. Then at 80th sample the A workload reduce to nominal request
rate. Then at 100th sample B workload increases to 30 requests/sec from
10 requests/sec while A remain at 10 requests/sec. In addition, we set the
reference value (set point) to 1, indicating that both client classes are equally
important for the initial experiments.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

10

15

20

25

30

Sample Id

W
or

kl
oa

d
(r

eq
ue

st
s/

se
c)

A
B

Figure 12: Workload settings

Firstly, we evaluate the performance of the fixed controller, which does
not take the feedback into account to make decisions. It does not make any
session allocation decisions at runtime. At design time, depending on the
previous knowledge about the workloads and the system behavior, resource

26

demand is forecasted and it is hardcoded in the system as the allocation for
A and B. Since the set point for the experiments is 1, we implemented equal
allocations for two classes (Sa = 10 and Sb = 10). Figure 13 shows the per-
formance of a fixed control.
The performance is satisfactory till the 30th sample, however it fails to achieve
the set point afterwards when either A or B workloads increased over the
nominal operating region. From 30th sample period to 80th we can see that
B starves for resources while A having lot more than required. Similar be-
havior occurs after 100th sample time. This justify that fixed allocation is
really inefficient for the systems that face unpredictable and time varying
workloads. These reasons lead to the importance of having adaptive decision
making mechanism at runtime depending on the workload fluctuations.

0 50 100 150
0

5

10

15

20

25

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set Point

Figure 13: Performance of the fixed controller

Then we show the performance of the model predictive controllers based
on different types of models discussed so far. In section 5, we mentioned
about the different tuning parameters of the model predictive controller.
For our convenience we set many parameters to fixed values and used rw
parameter as the main tuning variable in the controller. The change of the
values of this parameter changes the pole locations of the close loop system,
so that the performance specifications such as stability, overshooting, and
settling time can be analyzed effectively. The table 3 shows the values of
these variables that were fixed for all experiments discussed in this section.
In addition, we formulated the constraint problem to avoid control input
deviating out of range (i.e. umax = 4, umin = 0.25). That is the cost function
was optimized with hard constrants. We did not use any soft constraints for
these experiments.

27

Table 3: Parameters of MPC for the experiment

Parameter Value
Np 5
Nc 20
Q Identity matrix
Rs 1

Firstly, we investigate the performance of the single linear model based
predictive controller performance. The model construction and details were
discussed in section 4.1. We use the model in equation 1 for this purpose.
Figure 14 shows the performance comparison for different values of tuning
parameter rw.

The general observation from figure 14 is that, when a disturbance oc-
curs (i.e at 30th and 100th samples), there is a overshooting in the measured
output but it eventually settles down illustrating the disturbance rejection
capabilities of the predictive controller. However, what is interesting to note
here is the steady state behavior of the control system after a disturbance.
When the workload of A increases at 30th sample, performance deviates from
the objective value and settles down with low steady state error. In contrast,
when workload of B increases at 100th sample steady state error is compar-
atively high after settling down. This behavior is evident in most of the
cases shown in figure 14. The issue of steady state error is less evident when
rw = 5 and 10, but the settling time and the overshooting at the 30th sample
has drastically increased. In addition, the startup performance has degraded
as well. Theoretically, when the rw is small the poles of the close loop sys-
tem get close to the origin of the complex plane (for more details refer [21]).
This means gain of the predictive controller increases hence, the controller
becomes more aggressive towards disturbances. Thus, the increase of set-
tling time at large values of rw (= 5 and 10) can be explained. The steady
state behavior after 100th sample is satisfactory when rw = 5 and 10 cases
indicates that controller is less vulnerable for noisy workload conditions due
to low aggressiveness.
From the analysis of these results it is difficult to select the control tuning
parameter (or controller gains) to achieve satisfactory performance in either
A or B regions. If we use high gains controller performance in B region de-
grades due to large steady state errors and oscillatory behavior. This issue

28

0 50 100 150

0.5

1

1.5

2

2.5

3

3.5

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set point

(a) rw = 0

0 50 100 150

0.5

1

1.5

2

2.5

3

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set point

(b) rw = 0.1

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set point

(c) rw = 1

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set point

(d) rw = 5

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set point

(e) rw = 10

Figure 14: Performance of the controller with the linear MPC

29

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

r
w

 = 10

r
w

 = 0

Set point

(a) Controller performance

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

Sample Id

S
es

si
on

 a
llo

ca
tio

n
ra

tio
(u

)

r
w

 = 10

r
w

 = 0

(b) Control input

Figure 15: Controller performance and input variations for rw = 0 and 10

occurs because of the discontinuous, unequal spacing of the control input
in the region of B. Due to this reason an aggressive controller cannot set-
tle to a desirable operating point. Even if it settles to a point for a short
while, the noisy workloads tend to affect the performance of the controller.
In contrast, if we use low gains, performance of region B can be improved
however settling time and overshooting increases for A region showing the
lack of aggressiveness of the controller. Figure 15 shows a comparison of the
performance and control input variations for a highly aggressive controller
(rw = 0) and less aggressive controller (rw =10). Figure 15b) indicates that
control input becomes really oscillatory in the case of rw = 0, compared to
rw = 10 after 100th sample, which lead to high steady state error in rw = 0
case. At the same time, Figure 15b) shows that, it takes comparatively large
amount of time (13 samples more) for the rw = 10 based controller to settle
to the desired operating point when the system encounter high A workload
at 30th sample.

This analysis shows that control system designer will face difficulties in
selecting desirable values for the tuning parameters for this relative guar-
antee control system. In addition, to general performance specific matrices
of the control system, discriminative behavior for each client class has to
be considered carefully, before selecting a appropiate controller parameters
(gains).
Now, we investigate performance of the control system when the Hammer-
stein model constructed in section 4.3, is used in predictive controllers. The

30

0 50 100 150

0

0.5

1

1.5

2

2.5

3

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Controller performance
Set point

(a) rw = 0

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Set Point
Controller performance

(b) rw = 0.01

Figure 16: Hammerstein model based controller performance of for a) rw = 0
and b) rw = 0.01

control system structure was not illustrated specifically for Hammerstein
model based control. However, the structure is similar to figure 11, only
difference is that the g−1 component is removed from the control system.
Figure 16 shows the performance of the controller for two cases of tuning
parameters.

The main noticeable improvement is that oscillatory behavior when the
system is operating in region B has vanished. The steady state behavior
after disturbances at 30th and 100th sample periods is similar for both client
classes. This is already a drastic improvement from the linear model based
controller. It is because the predictive controller is now operating with the
transformed input variable v, instead of original variable u. This transformed
variable gives the controller an input with equal spacing, which gives the
predictive controller more flexibility to settle down to a desired operating
point even with noisy workloads. So that the variation of the transformed
control input (v) shows similar behavior in both A and B regions. From
figure 17, we can see that the fluctuations of the original input variable after
the 30th sample (when system operates in region A), looks the same for linear
model and Hammerstein model cases. In contrast, we can see that in the case
of Hammerstein model the original control input does not show oscillatory
behavior compared to linear model case after the 100th sample. Hence, we see
this performance improvement of the controller. Another noticeable property
is, the overshooting and settling time has improved a lot when we use more

31

aggressive controller (rw = 0). In addition, when selecting the gains we have
selected very low values for the tuning parameters otherwise settling time
and overshooting increases drastically. It is evident in figure 16b), even if we
increase rw from a small value like 0.01, the overshooting increases close to
1.5 times compared to rw = 0 case. We can see similar increments in settling
time.

0 50 100 150

−6

−4

−2

0

2

4

Sample Id

C
on

tr
ol

 in
pu

t (
u

or
 v

)

H model actuation(u)
H models control input(v)
Linear model actuation(u)

Figure 17: Comparison of original control input (u) and transformed input
(v) for linear model (case of rw = 1) and Hammerstein model (case of rw = 0)

Then we used the Weiner model, which was constructed in section 4.4
as the model of the predictive controller. For these experiments the f−1

component of the control system was removed and g−1 is replaced by equation
11. The performance of the model is shown in figure 18.

From figure 18a), the performance of the control system is satisfactory
till the 40th sample period and then it becomes really oscillatory when the
controller is operating in both regions. This gives us the indication that
the Weiner model performance satisfactorily when it operating with nominal
workloads settings. It is also noticeable that the steady state error in the
region of A is less than the region of B. If we look at figure 18b) the reason
behind such oscillatory behavior is saturation of the control input. How-
ever, the most interesting thing is the overshooting and the settling time.
Compared to figure 16, we can see that overshooting and settling time is
drastically low after a disturbance. This behavior may be because of the

32

0 50 100 150
0

0.5

1

1.5

2

2.5

Sample Id

R
es

po
ns

e
tim

e
ra

tio
 (

y)

Controller performance
Set point

(a)

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample Id

C
on

tr
ol

 in
pu

t (
u)

(b)

Figure 18: a) Performance of the wiener model (case of rw = 100) b) control
input (u)

existing input nonlinearity amplifies when the output in linearized. In addi-
tion, we believe that the model fit not sufficiently accurate compared to case
of Hammerstein model and Hammerstein-Weiner model, so that relatively
inaccurate static nonlinearities and the model could affect the performance
of the control system.
Next, we investigated the performance of Hammerstein-Wiener model, which
incorporate both input and output nonlinearities in the system model.

0 50 100 150

0.5

1

1.5

2

2.5

Sample Id

R
es

po
ns

e
tim

e
ra

tio
(y

)

Set point
Controller performance

Figure 19: Hammerstein-Wiener model based predictive controller perfor-
mance (rw = 50)

Figure 19 shows the best performance we saw thus far in this discussion.
The high steady state error issue when the system is operating in region of B

33

is not seen in the controller performance. In addition, the overshooting and
settling time has drastically reduced compared to Hammerstein model based
controller performance (figure 16). That is 21% reduction of overshooting
at 100th sample, compared to Hammerstein model based controller perfor-
mance. The setting for tuning parameter had to be set to very high value
to achieve this performance. The reason is zeros of the models (see equation
refLmsinefinal) lie well outside the unit circle. To adjust the gains of the
controller and place the close loop poles in desired locations, rw had to be
set to high values. If we set rw at low values, still we can achieve consider-
able performance but controller becomes more vulnerable for noisy workload
conditions and disturbances.

Figure 20 shows the performance and control input signal comparison of
linear model based predictive controller and two nonlinear model based con-
trollers, we discussed so far. We did not include the performance of Wiener
model, because the performance was not that satisfactory compared to other
models. The Hammerstein-Wiener model clearly out perfromances linear
and Hammerstein model based controller performance. From figure 20b),
we can see that at the start the different models settle down in to differ-
ent operating points. When the workloads are low at 10 requests/second
by each client class, there are wide ranges of operating points the controller
can settle to achieve the same control objective. Then at 30th sample with
A workload increases all controllers try to allocate more resources to A.
However, Hammerstein-Wiener model reaches the desired range of operating
points quickly than other models. All controllers show similar performance
characteristics in that region, till the B workload increase at 100th sample.
Hammerstein-Wiener model reaches the desired range of operating points 2
sample intervals before other models (100th vs 102nd), showing rapid response
to disturbances. In addition, it shows the performance characteristics of the
Hammerstein model embedded, because it avoids the oscillatory behavior
when the system is operating in region of B, compared to the linear model.
In addition, it shows the qualities of embedded Weiner model with low set-
tling times and overshooting.
Figure 21 illustrate the output signal (intermediate variable - w) of linear
component of the Hammerstein-Wiener model. It shows similar behavior as
the original measured output (y), because w is calculated by sending the
original measured output through the static inverse nonlinear function filter
(see equation 11). The set point is w =-15.2605 (calculated using equation

34

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

Sample Id

R
es

po
ns

e
tim

e
ra

tio

H−W model(r
w

 = 0)

H models (r
w

 = 50)

Linear model(r
w

 = 5)

Set point

(a)

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

Sample Id

S
es

si
on

 a
llo

ca
tio

n
ra

tio
(u

)

H−W model Output
H model Output
Linear model

(b)

Figure 20: a)Performance comparison of Linear model, Hammerstein model
(H), Hammerstein-Wiener model (H-W) , b) controller output comparison

16). The model predictive controller tries to achieve this set point, which
indirectly leads to achieve the performance objectives of the original system.
Incorporating known static input nonlinearities and the estimated output
nonlinearities in the system model and using it for control purposes, con-
sequently achieves superior performance compared to original/conventional
control system design.

0 50 100 150

−25

−20

−15

−10

−5

0

5

10

15

20

Sample Id

w

H−W model Output(w)
Set point (w = 15.26)

Figure 21: The intermediate variable w of the Hammerstein-Wiener model
(H-W)

We conducted set of other experiment to make this study more compre-
hensive. The tuning parameters that provided the best performance was used
in the predictive controller (Linear model - rw = 1, Hammerstein-Wiener

35

model rw = 50). Firstly, we evaluated how these models perform in the
nominal operating region. We changed the workload settings for these set
of experiments, where A and B start off with sending 10 requests/second
each, till the 50th sample and then both classes increase their workloads to
20 requests/second afterwards. The performance in the first 100 samples is
shown in the figure 22. This shows that the linear model provides better per-
formance even with large workload changes in the nominal operating region.
Similar performance can be achieved with Hammerstein-Wiener model based
predictive control. However, starting performance is better in Hammerstein-
Wiener model based predictive control. This shows that nonlinear models
are capable to represent the nominal operating region behavior equally well
as the linear model. However, nonlinear models are superior in the sense of
describing the global behavior of the system.

0 50 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Sample Id

R
es

po
ns

e
tim

e
ra

tio
 (

y)

H−W model
Linear model
Set point

Figure 22: Performance of Linear model and Hammerstein-Wiener model in
nominal operating region

Secondly, we investigated the performance comparisons when the sys-
tem is overloaded. On average server software system can handle 40-45
requests/second without overloading. When the system is overloaded the
performance of the system can degrade because the arrival rate and the ser-
vice rate of the system may have large mismatch. If this is the case desired
performance is hard to achieve whichever the control mechanism we use. The
normal practice is to implement some kind of admission control policy in the

36

server system so that when system reaches its capacity the requests can be
rejected [6, 7]. However, if the system is marginally overloaded a control
system can still achieve the performance objectives. In these cases the es-
timated nonlinearities and the linear models may have drastic mismatches
with the system. The main concern is the stability of the model when system
encounter unbounded disturbance. In addition, actuator saturation happens
more often, making the system to oscillate around the set point. However,
assuming the estimated linear models and nonlinear functions are sufficiently
accurate, we compare the performance of the controllers we designed in the
marginally overloaded circumstances. The workload setting was similar to
the workload settings in figure 12. The main difference is to overload we
increased the workload of A to be 35 requests/sec at 30th sample and B to be
35 requests/sec at 100th sample. Clearly the overshooting and settling time
performance specifications are better in Hammerstein-Wiener model com-
pared to the linear model (see figure 23). The oscillatory behavior is shown
in both models however, Hammerstein-Wiener model shows high oscillations
in region A because of its aggressiveness. The gain of the linear model based
predictive controller is less aggressive in the region of A, so it shows fewer
oscillations in that regions. Similar, behavior can be seen after 100th sample,
both models showing equal oscillations. It is hard to differentiate which con-
troller performs batter in this marginally overloaded case, because of uneven
performance in the linear controller. However, we can see that Hammerstein-
Wiener model provide similar type of performance for both operating regions
and low overshooting and settling time performance specifications compared
to the linear model.

Further, we conducted experiments to check the performance of the linear
model and the nonlinear models with different set points. For the experi-
ments described above, we treated client class A and B as equally important.
From the experimental results, it indicates that resource allocation can be
effectively done to achieve the set point equal 1. However, relative guarantee
control scheme can be used when the performance requirements of differ-
ent client classes are different. For instance, if B client class needs higher
response time than A. We can set the set point to greater than 1 (eg: 2,
3). If set point is 2, the controller will try to maintain the response time
of B twice as much as of A. Similarly, we can give priority to B by having
set point less than 1(e.g. : 0.5 ,0,25). To calculate the set point, response
time requirements requested in the SLA can be used, but it could depend
on other concerns as well. The decision of the set point must be taken by

37

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

Sample Id

R
es

po
ns

e
tim

e
ra

tio
 (

y)

H−W model
Linear model
Set point

Figure 23: Performance of Linear model and Hammerstein-Wiener model
when system is marginally overloaded

the control system designer considering the application settings and require-
ments of the software system. To show the performance of the models we
conducted two experiments setting reference to 3 and 0.5. For the first case
we applied 10 and 30 requests/second for A and B respectively, where as in
the second experiment we set the workloads 30 and 10 requests/second for
A and B respectively. Figure 24 shows the experiment results.

From figure 24a) it is clear that similar behavior we saw earlier experi-
ments is evident when set points are set to different values. When the system
is given an objective to maintain response time of B thrice as of A, perfor-
mance of the linear model becomes highly oscillatory. The Hammerstein-
Wiener model provides much better control by achieving on average, the
desired reference value. Then in figure 24b) we can see that the settling
time issue at the beginning till 30th sample, but it settles down after wards
showing similar performance to Hammerstein-Wiener model. These set of
experiments indicates that the Hammerstein-Wiener model can also perform
well in different set points.

7. Discussion

In summary, the startup performance of the linear model is compara-
tively deviates from the control objectives compared to both nonlinear mod-

38

0 50 100 150

1

2

3

4

5

6

Sample Id

R
es

po
ns

e
tim

e
ra

tio
 (

y)

H−W model
Linear model
Set point

(a) set point = 3

0 50 100 150
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample Id

R
es

po
ns

e
tim

e
ra

tio
 (

y)

H−W model
Linear model
Set point

(b) set point = 0.5

Figure 24: Performance of Linear model and Hammerstein-Wiener model
with set point at a) 3 and b) 0.5

Table 4: Statistical comparison of performance

Statistical Parameter Linear (rw = 5) H (rw = 0) H-W (rw = 50)
SSE 19.8 6.05 3.71
Max 3.81 2.8 2.49
Min 0.24 0.4 0.79

els. Similarly, when the system face a disturbance linear model takes more
time to settle down with high overshooting compared to nonlinear models. In
addition, when linear model is operating in region of B (away from the nom-
inal operating region) the performance becomes oscillatory with high steady
state error. This issue poses difficulties in selecting the tuning parameters
for the predictive controller. The control system designer has to trade-off
the performance between client classes to achieve the desired performance.
The performance of the nonlinear models looks drastically better in above
concerns. However, Hammerstein-Wiener model provides high disturbance
rejection characteristics compared to the Hammerstein model due to the in-
tegration of output nonlinearities in the model.
Table 4 gives a performance comparison with statistical operators. We used
sum of squares, Maximum and minimum values of the measured output as
statistical operators in this comparison. It is clear from this comparison that
Hammerstein-Wiener model outperform other two models with fair distance.

39

There are many reasons to see such improvements in performance. The
linear model tries to represent an inherently nonlinear system with a single
linear model. The linear model is sufficiently accurate within the nominal
operating region it was designed for. When a disturbance makes the system
to operate away from this nominal operating region, the nonlinear behavior
in input and output affects the model accuracy, leading the model predictive
controller to deviate from the control objectives. In addition, when a linear
model encounter discontinues/nonlinear control inputs it is hard to select the
gains and tuning parameters to achieve the optimal performance. The Ham-
merstein model tries to capture the static input discontinuities/nonlinearities
providing the linear controller more room and flexibility to control. Hence,
the tuning parameter and gain selection becomes convenient. Moreover, in-
tegrating Wiener model in to the system enable the model to capture nonlin-
earities in the output, providing more linear model of the system. The main
thing to remember here is Hammerstein-Wiener models are most suitable to
captures the static nonlinearities in the system, which indicates that there are
other nonlinear dynamics not captured by the Hammerstein-Wiener model.
These dynamics makes the system to deviates from the objective value with
some fluctuations. Overall, nonlinear block-oriented models captures suffi-
cient amount of nonlinear dynamics improving the controller performance of
the prototypical system we implemented.

Limitations: From the experiment results we can see that the nonlinear
block oriented models described an inherently nonlinear system more accu-
rately compared to a linear model of the system. However, limitations must
be mentioned as well. The nonlinear block oriented Hammerstein-Wiener
models are most useful in cases where nonlinearities are non-static (non time
varying). If this is not the case, integrated nonlinear blocks may amplify
the non-static nonlinearities making the system unstable [11]. On the other
hand, if the information about static nonlinearities is know at the design
time design process and runtime control becomes convenient. Further, one
of the main concerns in the self-managed software systems is the compu-
tational demand of the decision making module [32](in our case the model
based predictive controller). If we have fixed allocation there is no additional
computational overhead, but we showed that it cannot achieve the desired
performance even when the system is operating marginally away from the
designed range. The linear controller can achieve required performance up
to some extent by imposing some additional computational overhead. Simi-
larly, the nonlinear model predictive controller performance much better in

40

wide range of situations, but imposes even more computational overhead
compared to the linear model. Addition of two nonlinear blocks introduces
many Multiplications and Addition (#MAD) operations. The computational
efficiency also depends on the nonlinear function type selected (eg: polyno-
mial Vs nonlinear-ARMA). For the controller we designed with two nonlinear
blocks introduced 49 additional MAD operations, but for current software
system platforms such number of primitive operation should not pose any
difficulties. Yet another limitation is different original output (y) values may
map to relatively similar values of the transformed variables (w). This was an
issue in our implementation for instance when y = 3 and 15 the transformed
variable tend to have similar values (w = 22.06 and 22.53 respectively). Such
mappings make the transformed system to realize that both values are sim-
ilar in transformed control system. So that, when the set point is at 3, if
a disturbance drag the system to have value of 15, the transformed control
system may settle the original system to 15 in instead of 3, because of this
similar in transformed control system. If such cases are possible, other types
of functions could be utilized (such as splines).

Applications:The nonlinear block oriented approach we discussed in this
work is applicable when some of the static nonlinearities in the inputs and
outputs are known or can be analyzed at the design time. These cases would
exist if relative generate feedback control design is applied in many systems
for on-demand resource allocation, similar to the case study we presented in
this paper. For instance, three tire e-commerce systems with limited storage
/database connection threads, web servers with limited number of process
threads and data centers with server clusters and cloud computing environ-
ments. The Hammerstein model is applicable in optimizing power consump-
tion of processors (CPUs) by adjusting the operating voltage/ frequency
through dynamic voltage scaling technology. For example, the possible volt-
age transitions [33] has nonlinear operating points, which could utilize the
Hammerstein modeling approach described in this paper to achieve/improve
power optimization objectives via feedback control. In addition, one of the
issues in many resource allocation problems of software system is response
time (or measured output) is inversely (nonlinearly) related to the amount of
resources allocated. If we allocate more resources the response time going go
down, where as if we reduce the resources response time is going to increase.
This gives us the indication that resource allocation is inversely proportional
to the response time. Many publications have argued that due to this rea-

41

son to improve the model fit they have inverted the response time from the
sensor and integrated in to the system [23, 23, 23]. Such nonlinearities could
be effectively modeled as output nonlinearity using Weiner model. However,
there could be cases where time varying behavior of nonlinearities. In such
situations approach presented in [11], may be useful.

8. Conclusions

In this work we explore the performance improvements that can be achieved
using nonlinear modeling of the software system. In particular, we develop a
prototype of a real world software system and designed a relative guarantee
control system to achieve the business objectives of the stake holders. We
investigated the performance issues when the system is controlled using a
linear model based predictive control. The investigation showed that the is-
sues are mainly due to discontinuous control inputs and nonlinearities in the
system. Consequently, we modeled the relative guarantee control scheme as a
nonlinear block oriented model. We provide a step by step design procedure
to model the software system as a Hammerstein-Wiener model, and how it
can be used to implement a constraint based model predictive controller with
transformed variables. Finally, we experimentally evaluate the performance
of the linear, Hammerstein, Wiener, Hammerstein-Wiener models. Experi-
ment results indicate that Hammerstein-Wiener model based predictive con-
troller shows superior performance in many operating conditions compared
to other models.

[1] Y. Diao, J. L. Hellerstein, S. Parekh, J. P. Bigus, Managing web server
performance with autotune agents, Vol. 42, 2003, pp. 136–149, 1014768.

[2] H. Liu, S. Wee, Web server farm in the cloud: Performance evaluation
and dynamic architecture, 2009, pp. 369–380.

[3] M. Shaw, Beyond objects: a software design paradigm based on process
control, Vol. 20, 1995, pp. 27–38, 225911.

[4] M. Karlsson, X. Zhu, C. Karamanolis, An adaptive optimal controller for
non-intrusive performance differentiation in computing services, Tech.
rep., Hewlett Packard Laboratories (Februar1 18 2005).

42

[5] M. Karlsson, C. Karamanolis, X. Zhu, Triage: Performance differen-
tiation for storage systems using adaptive control, Vol. 1, 2005, pp.
457–480, 1111612.

[6] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, S. H. Son, Feedback
control architecture and design methodology for service delay guarantees
in web servers, IEEE Trans. Parallel Distrib. Syst. 17 (9) (2006) 1014–
1027, 1159253.

[7] D. Kusic, N. Kandasamy, Risk-aware limited lookahead control for dy-
namic resource provisioning in enterprise computing systems, in: Auto-
nomic Computing, 2006. ICAC ’06. IEEE International Conference on,
2006, pp. 74–83.

[8] X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, P. Padala, K. Shin,
What does control theory bring to systems research?, SIGOPS Oper.
Syst. Rev. 43 (1) (2009) 62–69, 1496922.

[9] J. L. Hellerstein, Challenges in control engineering of computing sys-
tems, 2004.

[10] J. C. GOMEZ, E. BAEYENS, Hammerstein and wiener model identifi-
cation. using rational orthonormal bases, 2003.

[11] A. D. KALAFATIS, L. WANG, W. R. CLUETT, Identification of
wiener-type nonlinear systems in a noisy environment, Vol. 66, 1997,
pp. 923 – 941.

[12] F. Jurado, Hammerstein-model-based predictive control of micro-
turbines, 2006, pp. 511 – 521.

[13] S. W. Sung, C. H. Je, J. Lee, D. H. Lee, Improved system identification
method for hammerstein-wiener processes, Korean Journal of Chemical
Engineering 25 (2008) 631–636.

[14] L. Ljung, System identification: theory for the user, Prentice-Hall, Inc.,
1997, 21413.

[15] J. Voros, An iterative method for hammersteinwiener systems parameter
identification, Journal of ELECTRICAL ENGINEERING (2004) 328–
331.

43

[16] E.-W. Bai, Decoupling the linear and nonlinear parts in hammer-
stein model identification, Vol. 40, 2004, pp. 671–676, doi: DOI:
10.1016/j.automatica.2003.11.007.

[17] F. Giri, F. Chaoui, M. Haloua, Y. Rochdi, A. Naitali, Hammerstein
model identification.

[18] P. R.K, P. M, Gray-box identification of block-oriented nonlinear models,
Vol. 10, 2000, pp. 301–315.

[19] Y. Lu, T. Abdelzaher, C. Lu, G. Tao, An adaptive control framework
for qos guarantees and its application to differentiated caching services,
2002.

[20] A. Bemporad, M. Morari, Robust model predictive control: A survey,
Vol. 245/1999, 1999, pp. 207–226.

[21] L. Wang, Model Predictive Control System Design and Implementation
Using MATLAB, Springer Publishing Company, Incorporated, 2009,
1592901.

[22] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, J. Bigus,
Using control theory to achieve service level objectives in performance
management, Vol. 23, 2002, pp. 127–141, 607902.

[23] X. Zhu, Z. Wang, S. Singhal, Utility-driven workload management using
nested control design, Tech. rep., Hewlett Packard Laboratories (Apri1
06 2006).

[24] R. Zhang, C. Lu, T. F. Abdelzaher, J. A. Stankovic, Controlware:
A middleware architecture for feedback control of software perfor-
mance851887 301.

[25] K. J. strom, B. Wittenmark., Adaptive Control, 2nd ed. Electrical En-
gineering: Control Engineering, Addison-Wesley Publishing Company,
1995.

[26] S. J. Norquay, A. Palazoglu, J. Romagnoli, Model predictive con-
trol based on wiener models, Vol. 53, 1998, pp. 75–84, doi: DOI:
10.1016/S0009-2509(97)00195-4.

44

[27] Matlab, Matlab system identification toolbox.

[28] W. C. L.Wang, From Plant Data to Process Control:Ideas for Process
Identification and PID Design, Taylor and Francis, 2000.

[29] J. C. Gomez, A. Jutan, E. Baeyens, Wiener model identification and
predictive control of a ph neutralisation process, Vol. 151, 2004, pp.
329–338.

[30] B.-G. Jeong, K.-Y. Yoo, H.-K. Rhee, Nonlinear model predictive control
using a wiener model of a continuous methyl methacrylate polymeriza-
tion reactor, Vol. 40, 2001, pp. 5968–5977, doi: 10.1021/ie990887b.

[31] R. B. Abdennour, M. Ksouri, F. M’Sahli, Nonlinear model-based predic-
tive control using a generalised hammerstein model and its application
to a semi-batch reactor, The International Journal of Advanced Manu-
facturing Technology 20 (11) (2002) 844–852, 10.1007/s001700200225.

[32] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and re-
search challenges, ACM Trans. Auton. Adapt. Syst. 4 (2) (2009) 1–42,
1516538.

[33] Intel, Enhanced intel speedstep technology for the intel pentium m pro-
cessor.

45

